

EO for Africa Symposium 2024

23 - 26 September 2024 ESA | ESRIN, Frascati (IT)

ASSIFIED - For ESA Official Use Only

Harison Kipkulei^{1,2,3}, Pamela Ochungo⁴, Francis Oloo⁴, Hussein Farah⁴, Stefan Sieber^{1,2}, and Gohar Ghazaryan^{1,5}

1 - ZALF, Germany, 2 - Augsburg, Germany, 3 - JKUAT, Kenya, 4 - TUK, Kenya, Kenya, 5 -Humboldt, Germany

💳 🔜 📕 🚍 💳 📲 📕 🗮 💳 📕 📕 💳 👫 💳 🖬 🚳 🔽 📕 👫 🛨 🖬 🔤 🐷 🖉 🖗 🔹 The European Space Agency

Cropclim Concept

✤ THE EUROPEAN SPACE AGENCY

eesa

Process-based modelling:

How does the production vary?

Remote sensing:

What is grown where?

Climate information:

What are the likely climatic conditions?

Crop condition:

How do seasonal crop conditions vary?

Why Busia?

- Complex cropping systems (over 27 crops – Cereals, tubers, legumes, oil, fruits, nuts, & vegetables).
- Wide range of climatic conditions AEZs.
- Dense network of weather stations coverage.

Cropclim Solutions

Integration of **process-based models** and **remote sensing** for detailed quantitative assessments of agricultural landscapes.

Utilization of **seasonal weather forecasts** from local meteorological divisions and IGAD Climate Prediction & Applications Centre (ICPAC).

A **scalable approach** that combines remote sensing, modelling, and agricultural landscape conditions using an expert-based fuzzy model for decision-making.

EUMETSAT

Crop type mapping and yield modelling framework (Own formulation)

Crop conditions maps (ADM-Kenya)

AARSE

EUMETSAT

• esa

→ THE EUROPEAN SPACE AGENCY

Crop conditions maps (ADM-Kenya)

Input: Phenology Approach:

Validation:

Sentinel-2 data Temporal filtering, AEZ-based Random Forest Model Comparison with other products, reports, User-based validation

EUMETSAT

· e e sa

9:15 am – 9:30 am

ID: 194 / 1.5: 3

Integrated use of Multisource Remote Sensing Data for National Scale Agricultural Drought Monitoring in Kenya: ADM-Kenya

<u>Gohar Ghazaryan^{1,6}, Maximilian Schwarz², S. Mohammad Mirmazloumi¹, Harison Kipkulei¹, Tobias Landmann³, Henry Kyalo³, Rose Waswa⁴, Tom Dienya⁵</u>

Session Details:

Climate change and adaptation

Time: 25/Sept/2024: 8:45am-10:00am · Location: Big Hall

💳 🛃 🚼 💳 🛶 📲 🏣 🔚 🔛 🗮 🔜 📲 🚍 🛻 🔯 🍉 📲 🗮 🚍 🛤 🕸 📾 🍁 🔸 The European space agency

Crop modelling

🗲 EUMETSAT

• Typical cropping systems model with interactions (Source: Wallach)

 Calibrated and evaluated for yield simulation in Kenya (Kipkulei et al., 2022; Kipkulei et al., 2024)

💳 🔜 📲 🚍 💳 🕂 📲 🔚 🔚 🔚 🔚 🔚 🔚 🔚 🔤 💏 📥 🚺 😹 🖬 🖬 🔤 🖛 🕅

eesa

Meteorological forecasts

- Seasonal weather outlook maps (precipitation) by the Kenya Meteorological Department were acquired, georeferenced and digitised.
- The outlook maps were cross-referenced with ICPAC reports.
- The maps were then rasterized, resampled and re-classified (low, medium and high conditions).

EUMETSAT

· e e sa

2019 season characterization

2021 season characterization

→ THE EUROPEAN SPACE AGENCY

Yield loss potential maps

2019 Season

2021 Season

The maps reflect the seasonal crop conditions

2019 – Marginal conditions

64% - High yield loss potential.

2021 – Poor conditions

78% - High yield loss potential.

→ THE EUROPEAN SPACE AGENCY

Yield loss potential maps

2019 Season

2021 Season

The maps also reflect the landscape conditions.

Sub-humid Zones – Southern parts

High yield loss potential.

Humid zones – Northern parts

Low yield loss potential.

- Multi-season evaluation and comparisons.
- Assessing the yield production risks, especially in the marginal areas.
- Validating yield loss potential surfaces User-based/field observations.

- Integration of multiple features of agricultural landscapes provides a holistic assessment for assessing yield loss potential.
- Expert-fuzzy models can potentially support extension and technology upscaling in smallholder agricultural contexts.

EUMETSAT

· e e sa

Acknowledgements

Funding

Data sources

Institutions

KENYA METEOROLOGICAL DEPARTMENT

💻 📰 🛃 🚍 📟 🕂 📲 🧮 📰 📲 📰 📲 📰 📲 🔤 🛶 🔯 🛌 📲 📰 🖬 📰 📾 🕍 👘 🔶 The European space agency

Thank you for your attention !!

Questions and comments

💳 🔜 📲 🚍 💳 🕂 📲 🧮 🔚 📲 🔚 📲 🔚 🚛 🚱 🖿 📲 🚼 🗰 🖬 👫