# Overcoming challenges to ecological condition mapping and monitoring in South Africa

#### Vernon Visser

Co-investigators: Andrew Skowno, Timm Hoffman, Colleen Seymour, Wataru Tokura, Curtley Tonkin, Stephni van der Merwe, Graham von Maltitz





South African National Biodiversity Institute



## South Africa is megadiverse!



# Ranked 6<sup>th</sup> out of 17 of the world's megadiverse countries

- >20 000 plant species
- Nine biomes
- Smallest of the world's floral kingdoms Cape Floristic Region



## We are losing biodiversity fast!



>25% threatened

# How do we know our ecosystems are threatened?



#### Vegetation map (potential extent)

#### National Land Cover (current extent)

Ecosystem Threat Status 202 (Original/Potential Extent) Endangered Vulnerable Least Concern



# RLE uses 5 Criteria to assess risk of collapse

- SA RLE already implements:
  - Criterion A: decline in distribution

IUCN

Guidelines for the Application of IUCN Red List of Ecosystems

Edited by L.M. Bland, D.A. Keith, N.J. Murray and J.P. Rodriguez

Categories and Criteria

- Criterion B: restricted distribution

These focus on the extent that is left



# There's a big problem – underestimating threat status



### Quick aside: what is ecological condition?

Ecological condition: Overall quality, measured in terms of quantitative metrics describing abiotic and biotic characteristics – UN SEEA

Key ecosystem components of condition: function, structure and composition



# Spatial Biodiversity Assessment Planning and Prioritisation (SBAPP)

- Regional project (South Africa, Namibia, Mozambique and Malawi)
- Aim: to develop national spatial databases on ecological condition
- Inform biodiversity assessment and planning



# SBAPP will provide critical supporting information for:

- Monitoring and reporting on the IUCN Red List of Ecosystems (RLE).
- Meeting the goals and targets of the Kunming Montreal Global Biodiversity Framework.
- Achieving Land Degradation Neutrality targets set by the UNCCD.
- Conservation and restoration spatial planning.



Botts et al. (2020). Biol. Cons. 246

# How do we plan to measure ecological condition?

• By mapping the processes that cause a decline in ecosystem function or structure = **pressures** 

|                 |                  | WE YE WE             |                           |                |               |              |                   |                     |                            |           |
|-----------------|------------------|----------------------|---------------------------|----------------|---------------|--------------|-------------------|---------------------|----------------------------|-----------|
| Biome           | Over-<br>grazing | Bush<br>encroachment | Fire regime<br>disruption | IAP<br>(Woody) | IAP<br>(Herb) | Soil erosion | Climate<br>Change | Over-<br>harvesting | Groundwater<br>abstraction | Pollution |
| Albany Thicket  | 2                | 4                    | . 4                       | . 3            | 3             | 3            | 4                 | . 3                 | 5                          | 4         |
| Desert          | 1                | . 5                  | 5                         | 3              | 5             | 2            | . 2               | 3                   | 5                          | 3         |
| Forest          | 5                | 5                    | 4                         | . 4            | 4             | 5            | 4                 | . 3                 | 4                          | . 4       |
| Fynbos          | 3                | 5                    | 1                         | . 1            | 3             | 4            | . 3               | 3                   | 4                          | . 4       |
| Grassland       | 1                | . 1                  | . 2                       | . 2            | 3             | 3            | 3                 | 4                   | . 4                        | . 3       |
| ЮСВ             | 1                | . 2                  | . 2                       | . 2            | 3             | 4            | . 3               | 4                   | . 3                        | 4         |
| Nama Karoo      | 1                | . 3                  | 4                         | . 3            | 4             | 3            | 4                 | . 4                 | . 5                        | 4         |
| Savanna         | 1                | 2                    | 2                         | 3              | 4             | 4            | . 3               | 4                   | . 4                        | . 4       |
| Succulent Karoo | 1                | . 5                  | 5                         | 3              | 4             | 3            | 3                 | 3                   | 5                          | 3         |

Summary of key pressures per biome.

1 represents the highest impact, 5 represents little to no impact.

# How do we map pressures?



## Assessing condition within the RLE framework

**Criterion C:** degradation of the abiotic environment **Criterion D:** disruption of biotic processes and interactions



# A practical example – Succulent Karoo

![](_page_11_Figure_1.jpeg)

bit.ly/SucculentKarooEcologicalCondition

Bell et al. (2023). J. Arid Env.

# What is our ultimate goal?

![](_page_12_Picture_1.jpeg)

#### Update the RLE

Pressures / indicator layers

# How can you contribute?

![](_page_13_Picture_1.jpeg)

![](_page_13_Figure_2.jpeg)

Connect us with similar projects

# Thank you!

Special thanks to the postdocs, students and intern who are making this work possible: Stephni van der Merwe, Wataru Tokura, Curtley Tonkin, Wesley Bell and Tim Kirsten

![](_page_13_Picture_6.jpeg)

vernon.visser@uct.ac.za

3