

EO for Africa Symposium 2024

23 - 26 September 2024 ESA | ESRIN, Frascati (IT)

Assessment of water quality changes in African lakes in response to climate trends and extreme events using satellite and meteo-climatic data

Lake Ecosystem Services & Extreme Events

EUMETSAT COOSA

AARSE

Lakes_cci project

The **Global Climate Observing System** (GCOS) has defined 55 ECVs.

An **ECV** is a physical, chemical or biological variable, or a group of linked variables, that critically contributes to the characterization of Earth's climate.

EUMETSAT

Under the framework of the European Space Agency (ESA) **Climate Change Initiative (CCI)**, the lakes_cci project provides global, stable, consistent, and long-term satellitebased products of the Lakes ECV.

- 1. Explore the lakes_cci dataset for sub-Sahelian lakes
- 2. Perform a multivariate analysis spanning 20 years
- 3. Identify dominant lake-climate interactions
- 4. Identify sentinel lakes

Research questions

How are Sub-Sahelian lakes influenced by climate trends? Can we identify "sentinel" lakes?

2

EUMETSAT

Methodology

Methodology

Using medium spatial resolution Sentinel-3 data

- Precipitation: TAMSAT | 1995 –
- Air temperature: ERA5 | 2020
- Chl-a, turbidity, LSWT:
 Earth Observation (lakes_cci)
 2002 2020

01. February 2019 Lake Surface Water Temperature. Lake Kyoga.

🗲 EUMETSAT

· e esa

- 2. Timeseries and pattern identification
- Using medium spatial resolution Sentinel-3 data
- 3. Identification and selection of (compound) extreme events
- Z-score and seasonal Z-score

- 4. Visualisation of water quality variables using CCI data
- Plot maps for each available date
- Apply threshold (# pixels > 50 %)

1. Lake selection

Results: timeseries lake Kariba

295 294

112010

Timeseries and trend of Chl-a (mean) values for Lake Kariba.

Year: 2016-2020, daily. Limits: 0, 150 (mg/m³)

→ THE EUROPEAN SPACE AGENCY

sa

Results: patterns

Timeseries

Lake	Rainfall	Air T	LSWT	Chl-a	Turbidity
Volta	\downarrow	-	\downarrow	\downarrow	\downarrow
Turkana	1	-	Ť	-	-
Kyoga	1	\downarrow	\downarrow	1	\downarrow
Naivasha	1	-	Ť	1	1
Tanganyika	1	-	-	-	-
Kariba	-	-	\downarrow	-	1

3. Identification and selection of (compound) extreme events

\rightarrow Precipitation and turbidity

Lake	EE date	Parameter(s)	Value (mean)	Z-score
Turkana	17/10/2020	Precipitation	27.7 mm	6.4
		LSWT anomaly	0.63	
		Turbidity	13.5 NTU	3.8

Results

- **3. Effects on water quality** Significant positive correlations:
- Air temperature and LSWT
- Air temperature and chl-a
- LSWT and chl-a
- Precipitation and turbidity
- Precipitation and chl-a

AARSE

ं

🗲 EUMETSAT

→ THE EUROPEAN SPACE AGENCY

· e e sa

Conclusions part I

K

High importance and demand for lake resources and other ES 1995 – 2020: Air temperature and cumulative precipitation increased for all

2

Water quality deteriorated in the context of the observed extreme weather events ★★☆

RS is a powerful tool to continuously monitor water quality

Part II: Assessment of sub-Sahelian lakes

Morphology

Assessment of sub-Sahelian lakes

AARSE

EUMETSAT COCA

Assessment of sub-Sahelian lakes

Origin of lakes

→ THE EUROPEAN SPACE AGENCY

Assessment of sub-Sahelian lakes

18

AARSE CORSA

Main climatic drivers

Climatology of all variables involved

Meteo variables from ERA5Land

Rainfall from TAMSAT and CHIRPS

AARSE

19

🗲 EUMETSAT

· e e sa

Main climatic drivers

Main climatic drivers across the regions

→ THE EUROPEAN SPACE AGENCY

Lake-climate interaction

Lake-climate interaction

And what about the future...?

 Collaboration with local experts on individual lakes to assess our findings → interested? Please reach out to us!

🕥 🕂 🚺 🗲 EUMETSAT 🔆 esa

GREIFE.J@IREA.CNR.IT; AMADORI.M@IREA.CNR.IT

