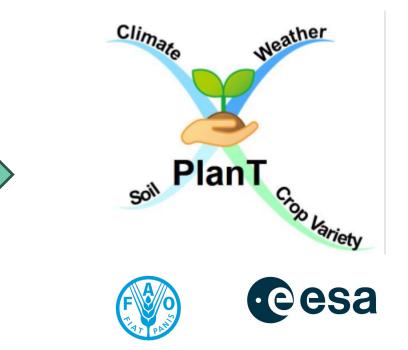


EO for Africa Symposium 2024

23 - 26 September 2024 ESA | ESRIN, Frascati (IT)

FAO Plan-T: Advanced Methodologies and Tools for Climate-Resilient Maize Cultivation Strategy Development

\rightarrow The European space agency


The issue

As **climate change** progresses, it's crucial to identify emerging patterns in **temperature**, **rainfall**, **and inter-annual variability** to help farmers adapt and maximize their return on investment.

🗲 EUMETSAT

💻 📰 📕 📰 💳 🕂 📲 🔚 🔚 🔚 📰 📲 🔚 🚛 👘 🔽 🖬 🖬 📥 🖓

•eesa

The action

Develop a real-time climate adaptation tool for farmers:

 Map optimal crop varieties every 10 days at 250m resolution using weather data.

AARSE

🚺 🕑 EUMETSAT

· e e sa

- Validate and calibrate the tool based on observed outcomes.
- Advise on planting dates and monitor climate stressors to assess crop loss risks, using real-time soil moisture and weather forecasts.

Which variety to plant in each location?

🕥 🚠 🚺 EUMETSAT COSA

Identify maize varieties

Selecting 3 climate scenarios (dry, average, wet)

Computing yields for each variety in each pixel for 3 weather scenarios

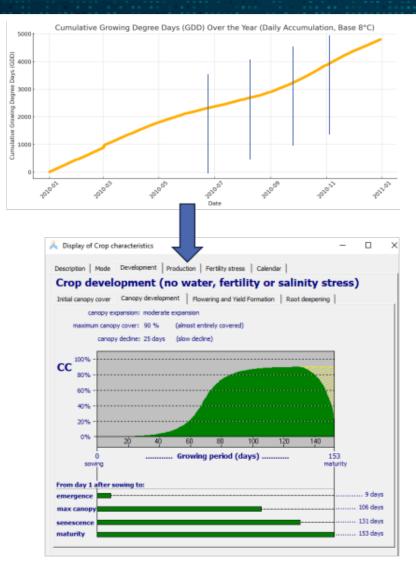
Which variety to plant in each location? STEP I

Identification of locally available maize varieties

Maize Varieties	Maturity Group	Marketing seed company
SC513	Early	Seedco Ltd
DK8033	Early	Monsanto
PHB30G19	Medium	Pioneer Dupont Ltd
ADV637W	Medium	Advanta Seed Company
PAN 53	Medium	Pannar
AFR635	Medium	Stewards Globe (Afriseed)
ZMS 606	Medium	Zambia Seed Company
AFR 638	Medium	Stewards Globe (Afriseed)
ZMS 721	Late	Zambia Seed Company

*

5

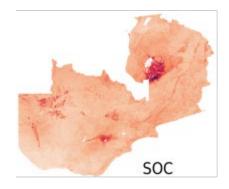

Which variety to plant in each location? STEP I

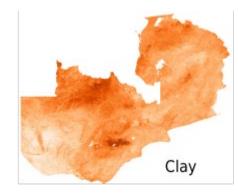
Parametrization of the maize varieties

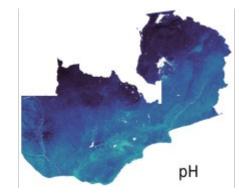
				Initial Stage	e Mid-Season Stage						
Variety	Maturity Group	Days to maturity	Days to maturity	Emergence	50% Tasse	ing 50% Silking	Anthesis-Silking	50% Anthesis	Yield potentia	al	
					Initial Stage		Mid-Season Sta	9e			
	Variety	Maturity Group	Davis to maturity	Dave to maturity	Ememence 50% Tasselina 50% Siliina Anthesis Siliina 50% Archesis Vield occential Initial Stage Mid-Season Stage						
		Variety	Maturity Group	Days to maturity (calendar days)	Days to matu (GDD)	rity Emergence	50% Tasseling number of days before about 50% of plants	50% Silking	Anthesis-Silking Internal (ASI)	50% Anthesis (pollen production)	Yield potentia
							start shedding pollen				
AFR635						Days from day 1	Days from day 1	Days from day 1	Duration	Days from day 1	
DV637W	AFR635					after sowing to end of	after sowing to end of	after sowing to end of		after sowing to end of	
AN 53	ADV637W					phenological stage	phenological stage	phenological stage		phenological stage	
HB30G19	PAN 53	AFR035	Medium	126	1,290	5-7	58	60	1	65	ó
C513	PHB30G19	ADV637W	Medium	128	1302	5.7	59	63	2	61	11
MS 606	SC513	PAN 53	Medium	122	1,244	5-7	61	63		62	7
	ZM5 606	PHB30G19	Medium			5.7			2		11
		PHD30317	Mooram	124	1,270	0-7	63	65	2	63	
		SC513	Early	119	1,206	5-7	59	63	2	61	7.5-8
		ZMS 606	Medium	128	1,302	5-7 MAIZE VARIETIS	57	62	2	60.00	8-10

- We match the phenological stages of the different field trials with the Growing Degree Days
- We average the GDD across the trials and obtain the parameters in AquaCrop

💳 🔜 📲 🚍 💳 🕂 📲 🧮 🚍 📲 📲 🚝 🛻 🚳 🖢 📲 🗮 🚍 🖬 🖓 ե 🖬 👘 🛶 🖛


Which variety to plant in each location? STEP I




Creating environmental datasets - Soil

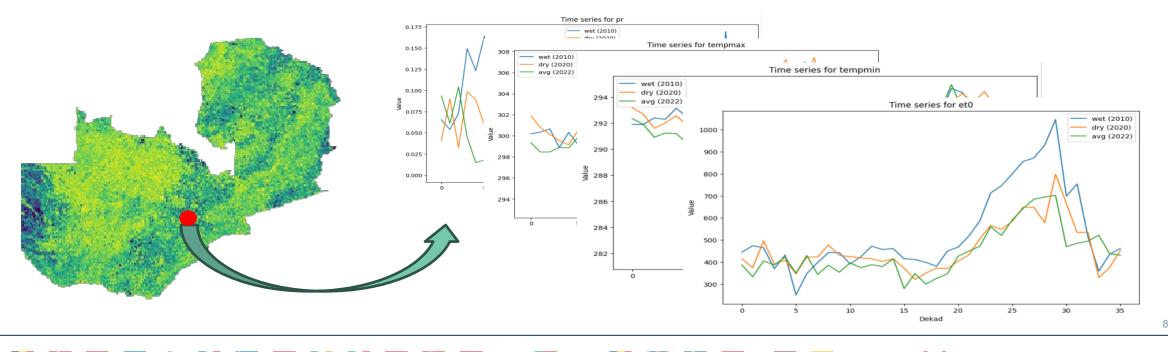
Texture and chemical properties from SoilGrids and Africa SoilGrids

- Texture: Sand, Silt, Clay [%].
- Soil Organic Carbon: SOC, g/kg.
- Soil pH in water.
- Salinity: Electrical conductivity, dS/m.

🚦 🚍 🕶 🕂 📲 🔚 🔚 🧱 🔚 📲 🚍 🛻 🚳 🍉 📲 🚼 🖬 📰 📾 📾 🗠 👘 🔸 🖿

Which variety to plant in each location? STEP II

Selecting 3 climate scenarios

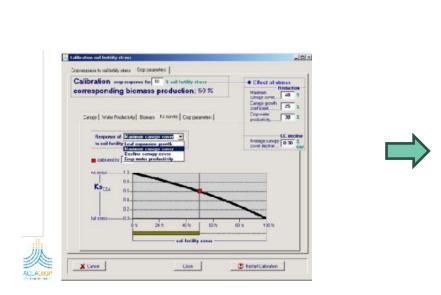

• Collect daily climate data (20-30 years) per 250m pixel from ERA5 Land and FAO Agroinformatics (ET0).

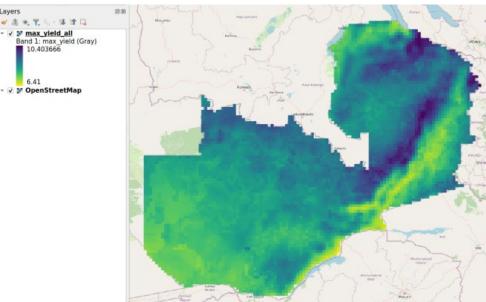
· e esa

🗲 EUMETSAT

 \bigcirc

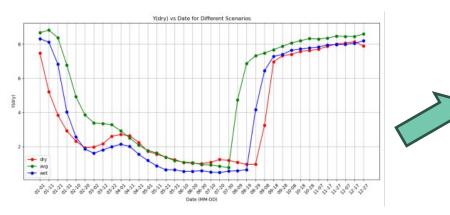
- Aggregate yearly precipitation data.
- Select an average year, 5th percentile (wettest), and 95th percentile (driest) for precipitation.
- For the 3 years, extract daily ET0 and min/max temperature per pixel.




Which variety to plant in each location? STEP III

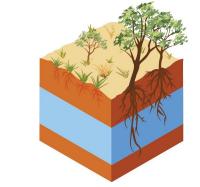
Computing yields for each variety in each pixel for 3 weather scenarios

- 1. Identify Growing Season: Select the 5th day of each dekad across 3 representative years totaling 36 dekads per year.
- 2. Simulate Yields: Use AquaCrop with daily weather data to simulate yields for 9 crop varieties over 36 dekads and 3 scenarios, resulting in 972 simulated yields per pixel.
- **3. Average Yields:** Calculate average yield per dekad across the 3 years to represent yield under prevailing climate conditions.



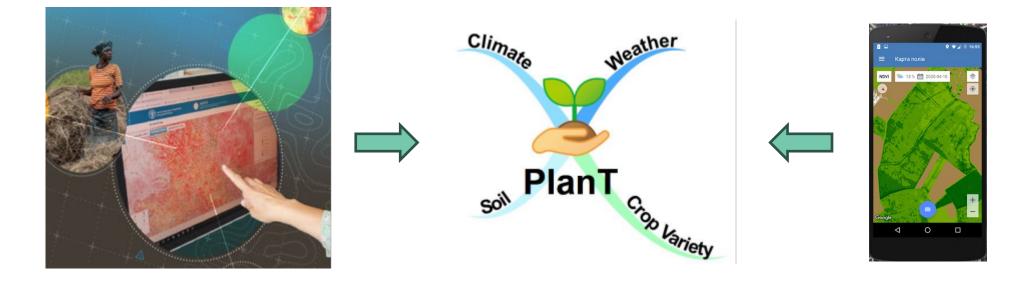
When to plant?

Calculate Water Needs



Identify Best Dekad for Yield

Choose Optimal Planting Day

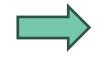

Compute Soil Water Balance

💻 📰 📲 🚍 📟 🕂 📲 🧮 📰 📲 🔚 📲 🔚 🚛 🚱 🛌 🕼 📲 🚟 🖛 🚱

How can farmers do that?

→ THE EUROPEAN SPACE AGENCY

Near real time monitoring of crop evolution through climate stressors


Evaluate the impact of climate stressors in crop productivity per Maize Variety per growing phase:

Impact = *Exposure* * *Hazard* * *Vulnerability*

Identify the Exposure using the crop coefficent (Kc) for each maize variety during each growth phase as the asset at risk.

Consider as Hazards the Cimate Stressors: Extreme Precipitation, Droughts, Heat and Cold Waves.

$$\sum_{phase} K_c^{phase} \times \max_{CS} \left(v_{cs}^{phase} \times h_{cs}^{phase} \right)$$

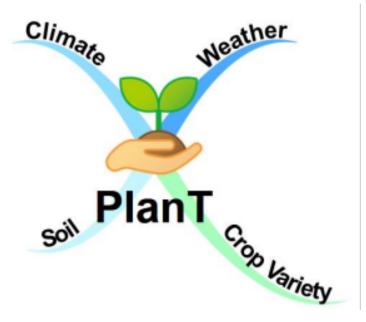
Estimate the Vulnerability as the coefficient assessing the effects of the Cimate Stressors per maize variety per phase.

EUMETSAT

Phase	SPEI	Cold Spell	Warm Spell	CDD	Pd20mm
Phase 1					
Phase 2					
Phase 3					
Phase 4					

The **reduction in yield** for red, orange, yellow and green are resp. 80%, 60%, 40% and 20%

12


Conclusions

•Innovative Methodology: Introduced a novel approach for evaluating climate performance.

•**Project Progress**: Successfully completed the initial phase, paving the way for future research and applications.

•Performance Evaluation: Continuous assessment throughout the project has led to valuable insights and adjustments.

•Next Steps: Focus on refining the methodology and publishing the first version.

EUMETSAT

•eesa

THE EUROPEAN SPACE AGENCY → THE EUROPEAN SPACE AGENCY