

24/09/2024

EO for Africa Symposium 2024

23 - 26 September 2024 ESA | ESRIN, Frascati (IT)

EO Africa Water Resource Management: support to farmers and planners to improve irrigation water management

\rightarrow The European space agency

Project Team

National Authority for Remote Sensing & Space Sciences (NARSS) Egypt

💳 🔜 📲 🚍 💳 🕂 📲 🔚 🔚 🔚 🔚 🔚 📲 🔚 🛻 🚳 🖿 📲 🖿 🖬 🖉

Objectives & Outcomes

Objectives:

- To map the actual evapotranspiration (ETa) and thus the actual water consumption of the cultivated crops
- To estimate the irrigation efficiency at regional scale
- To evaluate the impact of introducing low water consumption rice varieties or innovative irrigation practices

Outcomes:

- Creation of a web platform for the integration of ETa, NDVI and CWSI maps
- An open source ETa model in Python for estimating the ETa during summer and winter seasons
- Compare with actual field measurements for evaluation of the approach

→ THE EUROPEAN SPACE AGENCY

SARE model

ETo varies depending on land cover, elevation, location, weather condition, and Julian day

ETo=Vf*Lf*Ef*Sf*Tf

Leading to ETa=ETo*Kc*Ks

The SARE algorithm has been applied for each of the EO data combination:

- 1. Using Sentinel-2 as input for VNIR data and Landsat for TIR data
- 2.Using Landsat for both VNIR and TIR
- 3. Using PRISMA as input for VNIR data (using different band configurations) and Landsat for TIR data.

The first two cases have been selected to establish a reference baseline using multispectral sensors to be compared with the results obtained from the hyperspectral sensor.

💳 💶 📲 🚍 💳 🕂 📲 🧮 📰 📲 🔚 📲 🚍 🛻 🔯 🛌 📲 🗮 🖿 🖬 🖉 📥 🖬

Region of interest

💳 🔜 📲 🚍 💳 🕂 📲 🔚 🔚 🔜 📲 🔚 🔤 🚛 🕼 🖢 🖛 🕼 🛌 📲 🛨 📰 📾 🕮 🕍 🔹 🗰 🗰

Output Product maps (1/2)

CWSI map

NDVI map

¥

Output Product maps (2/2)

→ THE EUROPEAN SPACE AGENCY

Hyperspectral satellite capabilities(PRISMA)

PRISMA (band # & range)	Sentinel-2 (band # & range)	Landsat (band # & range)				
Red: 32–35 (647–685 nm) NIR: 11–22 (778–905 nm)	Red: #4 (650–680 nm) NIR: #8 (785–899 nm)	Red: #4 (638–673 nm) NIR: #5 (772–898 nm)	Ĵ			
PRISMA bands sel (central wavel	ected for "RED" ength in nm)	PRISMA bands selected for "NIR" (central wavelength in nm)				
655	4	785.7				
664	.9	796.1				
674	.5	806.7				
		817.3				
		827.9				
		838.5				
		849.2				
		860.0				
		870 .7				
		881.5				
		892.1				

Approach 1: Combination of multiple bands We selected multiple bands in the Red and NIR part of the PRISMA spectrum to match the Red and NIR bands of Sentinel-2 (i.e., Red: 650–680nm; NIR: 785–899nm) and Landsat (i.e., Red: 638–673nm; NIR: 772–898nm)

Approach 2: Central wavelength band

We selected a single PRISMA band centered at 664.9 nm (for Red) and at 806.7 nm (for NIR)

Prisma's central bands

The ECOSTRESS challenge

- <u>ECOSTRESS data are not usable</u> because the acquisitions over the Area of Interest (AOI) occurred at night during the days
 of in-situ measurements. Using thermal measurements taken at night introduces too much uncertainty into the estimation of
 Ks.
- ECOSTRESS sensor in not operational Giving historical data without the option to choose ascending/descending orbit's data, cloud coverage etc.
 - 16/06 Ecostress (night time)
 LST

16/06 Landsat LST

EUMETSAT

· e e sa

Ks complexity

The stress coefficient Ks value can be estimated using a linear relationship with the air-surface temperature difference as the main parameter.

Challenge

 Calibrating this linear function requires knowing the points of maximum and minimum phenological stages of crop due to water stress. This information is not easily obtainable, and uncertainties in this knowledge can introduce errors into the estimation.

Solution

 To minimize sources of uncertainty and enhance the reliability of the subsequent comparisons and analyses with EO data from PRISMA, Sentinel-2, and Landsat sensors., the Ks value was directly taken from in-situ measurements. This method was chosen to eliminate any potential inaccuracies that could arise from using remote thermal measurements, which can be affected by various atmospheric and sensor-specific factors or introduced by the methodology used to derive the Ks.

🗲 EUMETSAT

In situ validation (1/5)

VI ST

→ THE EUROPEAN SPACE AGENCY

*

In situ validation (2/5)

-

*

In situ validation (3/5)

Per Pivot comparison Season 1 (May-September 2023)

Landsat

Eta calculated with Ks from in situ (mm/day)

PN1

Prisma

AARSE

🚺 🔶 EUMETSAT

ETa calculated with Ks from in situ (mm/day)

→ THE EUROPEAN SPACE AGENCY

14

· e e sa

In situ validation (4/5)

Per Pivot comparison Season 2 (December-April 2024)

Challenge : Very few field measurements ! Many missing dates ! High in situ EVT values paradox ??

06/01/24 & 03/04/24 field measurements for PN2. In total 4-8 data points to compare, where 03/04/24 in situ ones really high

EUMETSAT

•eesa

In situ validation (5/5)

In total **2-6** data points to compare, where 03/04/24 in situ ones really high for **PN3**

AARSE

EUMETSAT

PN3

16

· e e sa

ML Approaches Data collection and dataset building

Date	Sample sites [n°]	Sampled pixels [n°]				
06/06	7	87				
16/06	21	117				
14/07	13	182				
22/07	13	113				

EUMETSAT COOSA

Location data

Prisma – VNIR - SWIR Landsat

In-situ

AARSE

Date	Pivots	Sample	Lat	Long	06_06_NI R 1	06_06_NI R 2	06_06_NI R 3	06_06_NI R 4	06_06_NI R 5	06_06_NI R 6	06_06_NI (R_7F	Landsat_ B1	Landsat_ B2	Landsat_ B3	TDR	ET0	Kc	Ks	ETa
06_06	PN1	F2S1	30.4539	31.9965	5 3563	3291	4122	4341	4831	5279	5627	1054	9 11406	14276	11.5	8.1	0.7	0.49	2.79
06_06	PN1	F2S1	30.4539	31.9965	2995	2829	3089	3246	4412	4569	4760	1032	9 11097	13815	11.5	8.1	0.7	0.49	2.79
06_06	PN1	F2S1	30.4539	31.9965	4246	4089	4958	4661	6066	6834	6703	1077	5 11622	13671	11.5	8.1	0.7	0.49	2.79
06_06	PN1	F2S1	30.4539	31.9965	5 3271	3235	3528	3465	4713	5061	5056	1053	5 11361	14221	11.5	8.1	0.7	0.49	2.79
06_06	PN1	F2S1	30.4539	31.9965	3804	3149	3439	3378	4643	4659	4871	1046	4 11247	14055	11.5	8.1	0.7	0.49	2.79
06_06	PN1	F2S1	30.4539	31.9965	5 3187	2972	3085	3276	4392	4475	4596	1052	1 11403	14358	11.5	8.1	0.7	0.49	2.79
06_06	PN1	F2S1	30.4539	31.9965	3169	3541	4262	4307	5018	5353	5634	1020	11007	13763	11.5	8.1	0.7	0.49	2.79

- 4 different dates
- 54 sample sites
- pixel sampled for both Landsat8 and PRISMA images

ML Approaches Algorithms and preliminary results

2 algorithms used:

- Light Gradient Boosting Model (LGBM) regressor;
- Random Forest (RF) regressor;
- R² used for prediction accuracy estimation;

	Accuracy R-squared						
Algorithms	Kc	Ks	ETa				
LGBM	0.88	0.15	0.73				
RF	0,88	0,05	0.54				

	Importance x predicted parameter											
		LG	BM		RF							
	Kc	Ks	ET0	ЕТа	Kc	Ks	ET0	ЕТа				
Band/Hyperspectral index	Landsat_ B10	ndmi	ndmi	Landsat_ B10	VNIR_24	VNIR_4	VNIR_24	LST				
	VNIR_1	SWIR_4 1	Landsat_ B10	VNIR_40	VNIR_23	VNIR_3	VNIR_21	Landsat_ B10				
	ndmi	VNIR_40	SWIR_49	SWIR_10 2	VNIR_25 ndmi		VNIR_23	ndmi				
	VNIR_40	/NIR_40 SWIR_9 7		ndmi	VNIR_22	SWIR_86	VNIR_25	SWIR_49				
	SWIR_99	WIR_99 SWIR_4 0		wi	SWIR_22	Landsat_ B10	VNIR_27	SWIR_50				
	VNIR_42	SWIR_8 9	SWIR_93	SWIR_42	SWIR_41	SWIR_42	VNIR_28	srwi				
	SWIR_3	Landsat_ B10	srwi	SWIR_95	VNIR_19	SWIR_13 6	VNIR_29	VNIR_1				
	CSWI	SWIR_3 5	VNIR_40	SWIR_10 1	SWIR_49	srwi	ndvi	VNIR_2				
	SWIR_49	SWIR_9 8	VNIR_9	CSWI	ndmi	LST	LST	VNIR_3				
	srwi	SWIR_9 1	VNIR_6	SWIR_97	VNIR_20	VNIR_2	ndmi	VNIR_4				

The EO Africa Platform

Login/Landing Page

The EO Africa Platform

geonodelorg Developers About

Time series selection

The EO Africa Platform

*

→ THE EUROPEAN SPACE AGENCY

Challenges (1/2)

•The ECOSTRESS challenge

•Few data points in each field visit. One field visit at each visit gives 4-7 field measurements to compare.

•Timing Discrepancy in Data Collection: The limited number of monitoring dates, influenced by the specific pivot being considered, highlights a critical challenge in synchronizing Earth Observation (EO) data acquisitions with insitu data collection.

•Phenological Stage-Dependent Monitoring Needs: Crop growth stages exhibit varying monitoring requirements. Early stages may need less frequent monitoring, whereas advanced stages, particularly during peak irrigation demands, require more frequent satellite overpasses to capture critical data.

•In-Situ Data Accuracy Challenges: Low coefficients of determination between EO and in-situ data can stem from inaccuracies in traditional in-situ data collection methods.

EUMETSAT

Challenges (2/2)

•Discrepancy in Soil Moisture Measurements: There is a notable mismatch between soil moisture levels obtained via EO thermal data (CWSI) and in-situ measurements (TDR probe). This discrepancy may be attributed to factors like soil water retention, solar radiation, or wind speed, which impact the relationship between soil moisture and vegetation health.

•Impact of Spatial Resolution on Leaf Temperature Assessment: Leaf temperature, derived from satellite data, is effective for assessing crop water status. However, the 30-meter spatial resolution may introduce errors, particularly at the endpoints of pivots, where the influence of bare soil can distort land surface temperature values, complicating the identification of "hot" and "cold" spots in vegetation.

EUMETSAT

· e e sa

Conclusions/Future steps

- Hyperspectral sensors give promising results and provide an alternative in terms of wavelength choices, giving the opportunity to adjust/work with different bands and indexes
- Understand the Season 1 and Season 3 similarities and find a common perspective for each season to use as calibration

EUMETSAT

•eesa

- Leverage the good R² ML approach gives so far .
 - Either use the ML results as calibration parameters to the SARE model approach results
 - Either use some algorithms from the LGBM model and customize to the developed algorithm
 - Tries to be independent from Ks index as this introduces many risks in terms of prediction no matter the method used regarding EO data

💻 🔜 🛃 🚍 💳 ┿━ 📲 🔚 🔚 🔚 📲 🔚 🔚 🔤 🛻 🔯 🍉 📲 🚼 🖬 📾 🐏 📾 🍁 🔹 → THE EUROPEAN SPACE AGENCY

Thank you !

→ THE EUROPEAN SPACE AGENCY