

EO for Africa Symposium 2024

23 - 26 September 2024 ESA | ESRIN, Frascati (IT)

Integration of sparse multi-source earth observation data with deep learning for crop type and yield estimation in smallholder farming areas

Getachew Workineh Gella*, Daniel Bekele**, Daniel Ayalew**, Stefan Lang* *Christian Doppler Laboratory for Geospatial and EO-Based Humanitarian Technologies (GEOHUM), Department of Geoinformatics—Z_GIS, Paris Lodron University of Salzburg **Bahir Dar University, Geodata and Technology Center, Bahir Dar Ethiopia

ESA UNCLASSIFIED - For ESA Official Use Only

Introduction

- Fragmented and small farm plot characteristics
- Mixed cropping(landscape and farm level)
- Complex terrain
- Crop area statistics and yield estimation from agricultural sample surveys

🗲 EUMETSAT

· e e sa

- Efficiency, accuracy, practicality
- Spatially explicit mapping from earth observation imagery

💳 🔜 📲 🚍 💳 🕂 📲 🔚 🔚 🔚 📲 🔚 🔚 🔤 🐜 🖓 🛌 📲 🚼 🖬 📾 🖓 📩 🖬

Representation of global crop data layers

→ THE EUROPEAN SPACE AGENCY

Challenges of mapping crop types

💻 🔜 📲 🚍 💳 🕂 📲 🔚 🔚 🔚 📰 📲 🔚 🚛 🚳 🛌 🚺 👫 🚼 🖬 📟 🕮 🏜 👘 🔶 The Europe

Lack of data

- Crop type information per plot
- Yield information per plot or even per smallest administrative unit

Methods: Study site

• Situated in north-western part of Ethiopia

EUMETSAT

• Dominated by smallholder farming system

- One extended rainy season extends from May to October and
- Maize and Teff are dominant crops

· e e sa

Methods: Data

Data	Processing level	Processing	Access mod	Domain				
Sentinel-2	Atmospherically corrected surface reflectance	Cloud masking, gap filling and mosaic, resample	Archived	Optical				
Planet scope	Atmospherically corrected, temporally composited analytic product	Cloud masking, mosaicking	Archived	Optical				
SkySat	Bottom of atmosphere surface reflectance analytic product	Mosaicking	New tasking	Optical				
TerraSAR-X	Ground range detected and radiometrically calibrated product	Speckle filter and resampling	New tasking	Radar				
DESIS	Level 1A	Almost all scenes are cloud contaminated and not used at this stage	New tasking	Hyperspectral				
ESA land cover mask	Classified 10 meters resolution	Cropland mask generation	Archived	Thematic				
Field data	Crop type samples and yield data from farmers							

→ THE EUROPEAN SPACE AGENCY

*

Field data validation and super pixels

→ THE EUROPEAN SPACE AGENCY

Mapping crop type and modelling yield

✓ Random forest✓ Support vector machine

✓ RNN
✓ LSTM
✓ Transformer
✓ Temporal CNN
✓ InceptionTime

✓ Future label

✓ Decision label

✓ Contrastive pretraining

✓ Crop yield estimation

Modelling crop yield as a classical regression task

$$\mathbf{y} = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \cdots + \beta_n x_n$$

where y is predicted crop yield and α is regression line intercept, β_1 to β_n are slopes then select only statistically significant covariates which explain crop yield variance

Crop type classification performance

	RF	SVM	RNN	LSTM	Transformer	InceptionTime	TempCNN
TerraSAR-X	0.64	0.66	0.47	0.49	0.54	0.68	0.66
PlanetScope	0.81	0.80	0.72	0.77	0.77	0.82	0.80
Sentinel-2	0.72	0.80	0.72	0.75	0.75	0.77	0.79
Feature fused	0.79	0.81	0.78	0.78	0.76	0.83	0.82
Decision fused	0.78	0.81	0.71	0.76	0.76	0.81	0.81
Contrastive							
pretraining						0.84	0.83

11

-

Crop type spatial outputs

Outputs from TempCNN

💳 🔜 📲 🚍 💳 🕂 📲 🧮 🔚 📲 🔚 🔚 🔤 🛻 🚱 🕨 📲 🗮 🕳 H

Sparse observations during the critical growing season

EUMETSAT

AARSE

eesa

Resembling spectral and temporal profiles

AARSE

 $\langle \gamma \rangle$

eesa

EUMETSAT

📲 📰 📰 💳 🕂 📲 🔚 📰 📲 🔚 🔚 🔚 🔚 🔤 🐜 🚱 🛌 📲 🛨 📰 📾 🖓 🎽 👬 🛨 🔤

Crop yield estimation

→ THE EUROPEAN SPACE AGENCY

*

15

EUMETSAT COSA

- With sparse time series data, machine learning models can have comparative performance with deep learning models
- TerraSAR-X underperform others in all experimental setups
- Feature-level fusion and pretraining show better results
- Further work on the inclusion of field management, climate and terrain-related parameters in mapping and incorporating uncertainty to yield estimation

EUMETSAT

•eesa

Acknowledgement

- European Space Agency and Planet Labs for SkySat data access via the ESA Third Party Mission (TPM) program
- ✓ DLR for DESIS hyperspectral imagery
- ✓ Local farmers who are willing to cooperate for yield data