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ABOUT DIGITAL TWINS (DTs)

A DIGITAL REPLICA
OF OUR PLANET

Destination Earth (DestinE) aims to develop
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Digital Twins
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environmental
decisions
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to climate-related challenges.
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Our approach
1. MODEL

Selected

77 Joint UK Land
Environment Simulator

e Community model coordinated
by UK Met Office and UKCEH.

* Land surface component of the
UK Earth System Model
(UKESM).

* Major part of UK contribution
to global model
intercomparison projects (e.g.
CMIP6), thus informs the IPCC.
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2. MACHINE
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3. EO DATA
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Benefits of emulating the JULES land surface model

Emulator can accurately reproduce JULES simulations but also:
e is extremely fast (years per millisecond)
e can run huge ensembles, sample uncertainties, etc
* is extremely simple/lightweight (deployed in cloud/notebook/etc)
 makes JULES far more accessible to non-expert users
* cah be embedded into climate services
e allows explainability of model (Explainable Al methods)
e can be driven by other data (e.g. EO data)
e constrained by the “physics” within JULES
 but means we can potentially out-perform JULES by combining JULES
and EO data
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Python Framework for Emulator Development
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Example: ESA IMITATE Project

esa

Our emulator replicates JULES really well

* We developed machine-learning emulators of GPP
from JULES and generated a new GPP product by using
EO data as inputs.

* Excellent performance emulating JULES.

* Good agreement with other satellite GPP products and
some FLUXNET sites.

GPP monthly average 06-2019

Gross Primary Productivity (GPP) Time Series at Lat: 44.375°, Lon: 12.188"
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With EO inputs: vs JULES vs FLUXNET

Gross Primary Productivity (GPP) Time Series at FLUXN

a (lat: 51,308°, lon: 4.520° ) - Emulator pft_obs_24 - PFT 0
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Emulator with EO inputs - MODIS SendGPP (SIF-based)
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Lessons learned:

- Lots of gap-filling
needed.

- Distribution of input
variables needs to
be similar to JULES.

- Soil moisture at
deeper layers is key.
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EARTH OBSERVATION CLIMATE
INFORMATION SERVICE

Case study: soil moisture in Africa E@CIS

v We are building an emulator
for soil moisture in Africa,
based on previous work.

Machine
;E,"‘ Learning
:\g:/;Emulator

N1 2

v We will optimise and refine it
using our framework.

INPUT FEATURES

e Downward solar radiation e CO, concentration e 1 -7 day lagged precipitation

e Precipitation e [Soil Hydrological variables] e 1 -7 day lagged specific humidity

e Daily mean temperature e [Vegetation land cover fractions] e 20-day smoothed mean

e Surface pressure e Soil bulk density temperature

e Specific humidity e [Topographic variables] e 20-day smoothed specific humidity

e Daily minimum temperature e Wind speed e 20-day smoothed precipitation

e Daily maximum temperature
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Evaluation of Emulator

Soil Moisture [kg m~2]

w

0 10 20 30 40

JULES Soil Moisture [kg m~2] for 2019-03-01

National Centre for
Earth Observation

NATURAL ENVIRONMENT RESEARCH COUNCIL

=N

Cristina Ruiz Villena

=== JULES === Emulator

30 R? = 0.90, MAE = 0.66, RMSE = 1.03 Location 0 | 9 R? = 0.96, MAE = 0.10, RMSE = 0.15 Location 1
204 1

VGV NSY. (W Vi1

Ot e e e e ] e e _A_M ‘‘‘‘‘
30 R? = 0.99, MAE = 0.30, RMSE = 0.46 Location 2 | 9 R? = 0.98, MAE = 0.32, RMSE = 0.54 Location 3
201 1

1 m m Afm\ | M M M
R e e —— e =L =S oY~ LR~ nta S SIS, S S
o 30 —\;}:wg_gs, MAE = 0.56, RMSE'GUO.B(_ENWM* Location 4 ]52. 0.96, MAE = 0.71, RMSE W..1 12 Location 5
0+ A ]

! — W W
-t —_———————————————————————————————————
04 R? = 0.99, MAE = 0.58, RMSE = 0.81 Lo_cEtlon 6 | 4 R? = 0.98, MAE = 0.82, RMSE = 1.09 Location 7
204 \ B

0
30 RZ = 0.97, MAE = 0.45, RMSE = 0.56 Location 8 | RZ 0.99, MAE = 0.58, RMSE = 979 Location 9
204 | U ﬂw‘rﬁ
10 8

2018 2019 2020

Year

2018

2019 2020

Year

J Emulator performs exceptionally well and reproduces

results of JULES model
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Number of Dry Days — Emulator vs JULES
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Statistics for Emulator Performance for Validation Period
MAE
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Example of Meteorological Input Data

Top 25 Feature Importances

Explainability and Feature Importance
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-
Example of how these emulators can be used ’

= @=E=ny . NCEO - Digital Twin Earth Visualisation Tool

Historical Dry Day

Metric Data Selector Soil Moisture - Historical Time Series
This app allows the user to Threshold [kg m-2]
visualise the soil moisture content 19 . — Soll Molisture — Dry Day Threshold
and number of dry days per year 1 3
for a selected location and historic Time Range: 2000 .. 2020 i "
time range. ] - |
T e Desired Latitude: -10.1 ol
calculated as the number of days s % 2 \ \
the soil moisture has been below a Desired Longitude: 19.6 5 ;51 | \ | \ l
certain threshold. This threshold is e @ | \ \ ; ( F‘ [ |
defined by the user. § 10 - \ | \

4 =
How to use the tool & s+ \ \ | \ \ ; |

\J |
Define a soll moisture Selected Location 3 f t
2000 2005 2010 2015 2020

threshold to calculate the
number of dry days using the
box provided.

Specify the desired location
by selecting the latitude and
longitude using the sliders
provided.

Select the desired time range

Time

Number of dry days per year - Historical Time Series

by adjusting the 'Time Range' % 3
slider provided. o 1307 |
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Our African Digital Twin Applications

Tropical Wetland Methane Drought

Heatwaves

Parker et al. (2022)

Methane flux
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Wetland Fraction
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107-9 kg m-2 s-1
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Summary Thank you!
d Environmental Digital Twins (DTs) are a new paradigm for Contact:
decision support. Email:
[ Machine-learning emulators are building blocks. crv2@leicester.ac.uk
d We developed several machine-learning emulators of JULES. @DTW.'tt.er: .
rCristinaRuiz

d They are very good at emulating JULES.

(d They can be combined with EO data for model-data fusion.
d We are working on emulators for hydrological applications in

Africa (soil moisture, wetland methane, etc.) with a lot of potential.

Future Work

d We will use emulators as the building blocks for future Digital
Twins (e.g. wildfire or drought).

d We will develop climate services around these tools to provide
decision support.
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